A unified transformational approach for reductions in fault vulnerability, power, and crosstalk noise & delay on processor buses

نویسندگان

  • Raid Ayoub
  • Alex Orailoglu
چکیده

In this paper we propose a coding scheme for general-purpose applications that can reduce power dissipation, crosstalk noise and crosstalk delay on the bus lines while simultaneously detecting errors at run time. The reduction in power dissipation can be achieved through reducing the bus switching activity. Not only is the switching activity in individual lines reduced but so is the coupling activity across the adjacent lines, the major contributor to the overall power dissipation in deep submicron technology. Detailed analysis of crosstalk noise and delay shows that eliminating certain patterns of transitions and reducing the infeasible ones in terms of crosstalk noise and power dissipation is a feasible strategy for alleviating these problems. We propose an encoding technique consisting of the use of predefined patterns of transitions, one for each possible combination of input data, to generate the codewords. The restriction to the predefined patterns of transitions enables fast encoding and low hardware overhead. This work presents an extensive analysis of the consequent reduction in crosstalk and power. SPICE derived experimental results show a reduction in worst case crosstalk delay and noise, ranging up to 24% and 10% respectively. Extensive experimental results for various applications show significant reduction in power dissipation ranging up to 44% for switching activity on the bus lines and up to 25% for coupling activity. The results also show a drastic reduction ranging up to 98% in the number of patterns that are most likely to produce crosstalk errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Minimal-Cost Inherent-Feedback Approach for Low-Power MRF-Based Logic Gates

The Markov random field (MRF) theory has been accepted as a highly effective framework for designing noise-tolerant nanometer digital VLSI circuits. In MRF-based design, proper feedback lines are used to control noise and keep the circuits in their valid states. However, this methodology has encountered two major problems that have limited the application of highly noise immune MRF-based circui...

متن کامل

Optimization of Delay and Energy in On-Chip Buses using Bus Encoding Technique

In very deep sub-micron (VDSM) fault-tolerant busses, crosstalk noise and logic faults caused due to shrinking wiresize and reduced inter-wire spacing are major factors affecting the performance of onchip interconnects, such as high power consumption and increased delay. In this paper we propose a bus optimization technique which reduce the energy and power-delay using Hamming Single Error Corr...

متن کامل

Fault-coverage analysis techniques of crosstalk in chip interconnects

This paper addresses the problem of evaluating the effectiveness of test sets to detect crosstalk defects in system-level interconnects and buses of deep submicron (DSM) chips. The fast and accurate estimation technique will enable: 1) evaluation of different existing tests, like functional, scan, logic built-in self-test (BIST), and delay tests, for effective testing of crosstalk defects in co...

متن کامل

Efficient RC low-power bus encoding methods for crosstalk reduction

Abstact: In on-chip buses, the RC crosstalk effect leads to serious problems, such as wire propagation delay and dynamic power dissipation. Crosstalk noise is dominated by the coupling capacitance, resulting in wire propagation delay, logical malfunction and power dissipation on on-chip buses. Therefore, eliminating crosstalk effects have become a very important consideration in the development...

متن کامل

Comprehensive Evaluation of Crosstalk and Delay Profiles in VLSI Interconnect Structures with Partially Coupled Lines

In this paper, we present a methodology to explore and evaluate the crosstalk noise and the profile of its variations, and the delay of interconnects through investigation of two groups of interconnect structures in nano scale VLSI circuits. The interconnect structures in the first group are considered to be partially coupled identical lines. In this case, by choosing proper values for differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005